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A phase-field model for vesicles including hydrodynamics was presented in two and three dimensions
�T. Biben and C. Misbah, Phys. Rev. E 67, 031908 �2003�; T. Biben, K. Kassner, and C. Misbah, Phys. Rev.
E 72, 041921 �2005��. A particularly important feature for vesicles is that their membrane is locally incom-
pressible. In these works a tension field defined everywhere in the bulk was introduced in order to fulfill local
membrane inextensibility. Here we reconsider the original model by treating the phase field as a thermody-
namic variable and develop a picture which is consistent with the second law of thermodynamics. This enables
us to write the phase-field evolution equations in terms of a thermodynamical potential. This potential acquires,
at global equilibrium, a Lyapunov functional character. The goal of this paper is twofold: �i� The first and
primary goal is purely conceptual, in that we can write down a first and second principle for membranes, from
which the evolution equations follow, thanks to the evaluation of the entropy production and the use of
concepts of irreversible thermodynamics. �ii� Due to the monotonous character of the evolution of the func-
tional �at global equilibrium�, we expect this formulation to be more appropriate for numerical studies. The
formalism developed to account for the local incompressibility of the membrane is believed to offer a system-
atic framework in order to include naturally other physical ingredients, as briefly discussed here and demon-
strated in future works.
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I. INTRODUCTION

Vesicles are closed membranes suspended in an aqueous
solution �Fig. 1�. They constitute an attractive model system
for the study of mechanical and viscoelastic properties of
real cells, such as red blood cells. Their nonequilibrium dy-
namics have revealed quite rich behaviors. For example, un-
der shear flow vesicles can exhibit tank treading �the mem-
brane, which is fluid, moves as tank tread, while the vesicle
keeps a fixed orientation in the flow� �1,2�, tumbling
�1,3,5,6�, and vacillating-breathing �VB� �the vesicle long
axis oscillates around the flow direction, while the shape
executes a breathinglike motion� �7�. Furthermore, vesicles
manifest interesting rheological properties �8� which are trig-
gered by the above dynamics, and are believed to represent a
simple model for the blood rheology.

Analytical results on vesicles have been obtained in the
small excess area limit �i.e., in the quasispherical limit� �7,9�.
In general, however, the problem is fully nonlinear and non-
local, and one must resort to numerical studies. Originally
the numerical methods have been based on the integral rep-
resentation, by means of the Green’s function technique
�2,10,11�. This technique could be generalized to a large
number of vesicles in principle, but its efficiency is not ob-
vious, notwithstanding the fact that one has to keep track of
each vesicle position in the course of time. Other alternatives
to Green’s function techniques are based on dynamically tri-
angulated models �12� or particle-based mesoscale solvent,

multiparticle collision dynamics �13�. The combination of
dynamically triangulated models and particle-based mesos-
cale solvent, multiparticle collision dynamics, has been stud-
ied in shear and capillary flows �14�.

A promising alternative in order to circumvent front track-
ing is to make use of a phase-field approach. This was origi-
nally proposed for two-dimensional �2D� vesicles in �3� and
later extended to three dimensions �4�. Phase-field models
have now become popular tools for the study of free bound-
ary problems �like solid-liquid or liquid-vapor interfaces�
�15�. Instead of defining, as was traditionally done, an inter-
face in a sharp manner, the idea is to encode the interface
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FIG. 1. �Color online� Schematic view of a vesicle made of a
bilayer of phospholipid molecules.
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position in a rapid variation of a field � which is defined in
the entire space and is a function of time. This field takes a
constant value in each of the coexisting phases, but it varies
quite abruptly from one phase to the other. Typically �
� tanh�r /���, where r is the coordinate normal to the inter-
face, and �� is a small parameter representing the width of
the interfacial region. The advantage of the phase-field ap-
proach is that the evolution equations are defined in the
whole domain without explicit reference to an interface. The
virtue of the phase field is that it enables a straightforward
numerical implementation, together with a systematic ac-
count for topology changes. A method which is worth of
mention, and which bears some similarities with the phase
field one, is the so-called the immersed boundary method,
which has first been suggested by Peskin �16� and used to
model some properties of red blood cells �17�.

In �3,4� a phase-field model has been presented for
vesicles. In this model, the membrane is considered as a
diffuse interfacial zone. In reality, the membrane is made of
a bilayer �Fig. 1�, very much like cytoplasmic membranes of
real cells. The membrane may be in the fluid state �as is the
case in physiological conditions�, in which we are interested
here, or in the gel state �at low enough temperature�. In the
fluid state each phospholipidic molecule may diffuse like a
molecule as a usual fluid state does; the main difference is
that the phospholipidic motion is confined to two dimen-
sions. Due to its fluid character, the membrane does not resist
to shear forces. Owing to the cohesive forces between the
phospholipids, the membrane behaves as a two-dimensional
incompressible fluid. The only possible �soft� mode is the
bending mode of the membrane. The enclosed fluid, usually
water �or water and some additives, such as sugar, or poly-
mers in order to act on the internal viscosity�, is also incom-
pressible. The typical vesicle diameter lies in the range
1–100 �m, while the thickness of the membrane is of the
order of few nanometers, so that the membrane may be
viewed as a two-dimensional surface.

Unlike other interfacial problems where the area between
the phases may increase or decrease, the vesicle problem
brings a new feature in that the area is locally preserved.
Indeed, there is no exchange between the bilayer and the
surrounding fluid solution. This means that the area occupied
by a phospholipidic molecule remains constant in the course
of time. The membrane is thus incompressible. This con-
straint is not only global, but must be local, like an incom-
pressibility condition for ordinary fluids. Note that other
phase-field models have been presented since the first model
�3�. The two groups �18,19� did not include hydrodynamics
flow and they disregard the notion of local membrane incom-
pressibility.

In the sharp interface picture �11,20� the local area incom-
pressibility can be handled by introducing a space and time
dependent Lagrange multiplier. This amounts to writing the
contribution of the membrane energy related to the local
membrane incompressibility condition as

Einc =� ��rm,t�dA , �1�

where the integration is performed over the vesicle mem-
brane, and rm is the vector position of the membrane. The

Lagrange multiplier � is then determined by imposing

�I − nn�:�v = 0, �2�

where v is the fluid velocity, n is the unit normal vector to
the vesicle, and I is the identity tensor. The above expression
is nothing but the divergence along the membrane. The
Lagrange multiplier � does not appear in the above equation
which is the associated constraint, just like the pressure does
not appear in the solenoidal constraint in incompressible hy-
drodynamics. However, like the pressure, we show in the
following that � appears in the other equations of the model
�it couples to the velocity field�. In the phase field spirit �3,4�
the idea is to define � everywhere �and not only along the
membrane� but confine its action to the membrane region.
We then write

Einc =� ��r,t�����dV , �3�

where dV is the volume element of the total domain. Because
�� tanh�r /���, it is clear that ���� is a Dirac-like function
of width ��. This implies that the energy acts in the mem-
brane region only, as it should be.

In �3,4� the tension field was postulated to obey the fol-
lowing equation �apart from the Laplacian term which was
included in �4� for some numerical regularization�:

d�

dt
= T�I − nn�:�v , �4�

where d /dt is the material derivative, and n=�� / ���� is the
unit normal vector to the line of iso-�. T is a tensionlike
parameter which is chosen large enough, so that minimal
energy condition would enforce �I−nn� :�v	0, that is a
local quasi-incompressibility. This field was built on the ba-
sis of intuition and knowledge of the sharp interface problem
�11,20�.

The aim of this paper is to analyze theoretically the intro-
duction of a membrane incompressibility in the framework
of a phase-field model. In particular, this allows us to justify
Eq. �4� from a theoretical point of view. In that perspective,
the phase field is treated as a thermodynamic variable and
the incompressibility of the membrane is introduced through
a relevant thermodynamic energy functional. The thermody-
namic model is presented in Sec. II. The equations of motion
out of equilibrium are then derived in Sec. III; this derivation
is based on the application of the second law of thermody-
namics, which ensures the thermodynamic consistency of the
model proposed. These equations are then generalized in
Sec. V to account for hydrodynamics.

Vesicle membranes are endowed with other physical fea-
tures than local surface incompressibility, the most important
property being the bending energy. Likewise, the phase-field
model considered in this paper reduces to its most simple
expression, which implies that a surface tension exists,
whereas vesicles’ membranes do not exhibit such a surface
tension. However, in this paper, only the theoretical study of
the membrane incompressibility is addressed. Solutions to
eliminate surface tension �21� and to account for bending
energy �3� have been presented with an empirical spirit. In-
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cluding both effects in a thermodynamical spirit requires an
extended study which we have just performed. However, the
discussion is lengthy and conceptually nontrivial at some
stages, notwithstanding the various technical points. So it
seems to us important to defer these two issues to the near
future.

II. THERMODYNAMIC MODEL

The idea now is to treat the tensionlike-field � in a way
that is inspired by the notion of pressure for fluids, which is
a thermodynamic variable and which can also be interpreted
as a Lagrange multiplier associated to the bulk incompress-
ibility. We shall thus treat � as a thermodynamic variable.
The other two variables are � and ��. Then we introduce a
potential that is a function of these three variables. We de-
note the sought after potential as ��� ,�� ,��, which will be
required to represent the relevant thermodynamic function
�its link with the free energy F is presented later on�. We
propose the following expression for this potential:

���,��,�� = W��� +
�

2
����2 + ����� −

�2

2�
. �5�

In the original model �3,4� the last term was not introduced.
The first two terms are the usual phase-field terms that ensure
a tanh�r /��� behavior. The third term �which appears in �4�,
the last term in Eq. �5� in that paper� was introduced to
observe local incompressibility �see Eq. �3��. Note that here
we do not account for the membrane bending modes, but will
rather focus on the tension field only. The incorporation of
bending modes will be the subject of a future work.

It will turn out that the last term in Eq. �5� allows one to
build a thermodynamic picture of the model. We shall see
that � plays the same role as the “strength” T introduced in
Eq. �4�.

Let us define

�=̂
 ��

��
�

�,��

. �6�

In the particular case where the expression for
��� ,�� ,�� is given by Eq. �5�, one has

���,��,�� = −
�

�
+ ���� . �7�

The free energy F is supposed to be the Legendre trans-
formation of the potential � with respect to the variable �.
Thus one has

F = � − �� . �8�

The free energy is thus a function of �� ,�� ,�� and its dif-
ferential yields:

dF = �d� − �d� + � · d � � �9�

which defines in particular � and � �which is a vector�. Note
that we can write in terms of �

d� = �d� + �d� + � · d � � . �10�

In the particular case where the expression for
��� ,�� ,�� is given by Eq. �5�, one has

F��,��,�� = W��� +
�

2
����2 +

�

2
����� − ��2, �11�

���,��,�� =
dW

d�
, �12�

���,��,�� = �� + �� � � − ��
��

����
. �13�

In the spirit of phase transition phenomena �as will be dis-
cussed below� it can be recognized that F plays the role of
the free energy, while � is the analog of the Gibbs energy.

In the following, the expression for � as a function of �
instead of � will be useful. Given the expression �7� for �,
Eq. �13� becomes

���,��,�� = � � � + �
��

����
. �14�

III. EQUATIONS OF MOTION

We assume that the equations of motion are the following:

��

�t
= A , �15�

��

�t
= 0, �16�

�F

�t
= − � · q − � , �17�

where the expressions for A, q, and � must be determined.
The second law of thermodynamics imposes that, whatever
the motion is, the dissipation of energy � must be positive.
Equation �16� is quite intuitive since � will be shown to play
a role of lipid density. For the two other equations we are of
course at liberty to write them in this manner since for the
moment A and � could be any combination of the thermo-
dynamic variables. These functions will be fixed by the ther-
modynamic requirements.

Using Eq. �9�, Eq. �17� leads to

�
��

�t
+ �

��

�t
+ � ·

� � �

�t
= − � · q − � .

Using Eqs. �15� and �16�, the previous equation allows one
to determine the following expression for the dissipation of
energy �:

� = − � · �q + �A� − A�� − � · �� . �18�

To ensure the condition �	0, we propose the following ex-
pression for A:

A = − 
�� − � · �� , �19�

where 
	0. This choice means that we have set q
=−��� /�t. This nonclassical heat flux is well known in fluid
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mechanics in the framework of the van der Waals model of
capillarity �22�. It ensures the thermodynamic well-
posedness of the model.

The equations of motion �15� and �16� thus take the fol-
lowing form:

��

�t
= − 
�� − � · �� , �20�

��

�t
= 0. �21�

These equations are thermodynamically consistent, in the
sense that they ensure a decrease of the free energy F at
global equilibrium, as shown below.

In order to compare these evolution equations to those
originally presented in �3,4� it is more appropriate to reex-
press the above equations in terms of the variables �� ,��. By
making use of Eqs. �7� and �14� the previous equations take
the following form:

��

�t
= − 
�dW

d�
− � · 
� � � + �

��

����� , �22�

−
1

�

��

�t
+

�����
�t

= 0. �23�

It can be shown that �23�

d����
dt

= �I − nn�:�v , �24�

where d /dt designates the material derivative. As will be
seen in Sec. V the partial derivatives will be substituted by
material derivatives. So that we anticipate that we can write
from the above relation and Eq. �23�

1

�

d�

dt
= �I − nn�:�v . �25�

This is nothing but Eq. �4�, presented in �3,4� where T=�. It
is worth noting that, in the case where �→�, the postulated
equation of local conservation of � �16� degenerates to the
equation of local conservation of ���� �cf., Eq. �23��.

Some remarks are in order. In �3,4� the contribution of the
tension field, represented by ��� / ����, that enters Eq. �22�,
is not included in the evolution equation for � �Eq. �1� in
�4��, but rather in the Stokes equation �Eq. �3� in �4��. The
idea in �4� was to deliberately keep the phase-field evolution
equation as passive as possible, and to include the physical
forces in the Stokes equation only. This philosophy was mo-
tivated by the fact that the phase-field function was sought to
be a passive function, advected by the flow, and not contain-
ing any source of physics. The spirit developed in the present
paper is quite different in that it is wished to build the phase-
field model by fulfilling a demand of a monotonous evolu-
tion of the thermodynamic potential from which the phase-
field equations follow. Both spirits lead to the same
asymptotic equations in the sharp limit �i.e., when �→0�.
We expect, in principle, the present method to reinforce nu-
merical stability of the evolution, since a Lyapunov function

exists at global equilibrium, namely the free energy F.

IV. DISCUSSION

A. Sign of the parameter �

Hitherto we have made no assumption on the sign of �.
From Eq. �23� together with intuition we expect � to have a
fixed sign in order to guarantee thermodynamic stability. An
elementary analysis of thermodynamic stability shows that,
for the “phases” to be thermodynamically stable, it is neces-
sary that ��0.

B. Conditions of thermodynamic equilibrium

From a thermodynamic point of view, the equilibrium
state is characterized by the following condition:

�
V

�F + L1��dV = 0,

where L1 is the Lagrange multiplier accounting for the con-
straint of conservation of �, which, from its expression �7�,
becomes a condition of conservation of ���� in the limit �
→�.

One finds the following equilibrium conditions:

� = L1

dW

d�
− � · 
� � � + �

��

����� = 0.

C. Analogy with the mass balance equation

The evolution equation for � �16� has been postulated.
This equation corresponds to the conservation of � and not
of ����. Nevertheless, the form �23� of this equation shows
that the “principle” postulated degenerates to an equation of
local conservation of ���� when �→�.

It is useful to make a parallel with the mass balance equa-
tions in fluid mechanics, as shown in Table I.

In Table I, c is a thermodynamic variable �the mass frac-
tion in a binary alloy, for instance� which obeys a certain
evolution equation. The evolution equation for � is thus
equivalent to the mass balance equation and its form �23�
is the equivalent of the equation of propagation of the pres-
sure P.

TABLE I. Analogy between the mass balance equation in fluid
mechanics and the equation of conservation of � in the present
model.

Mass balance equation Conservation of �

� �

P �

��P /��� �

c ����
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The limit �→� states incompressibility. It is worth noting
that, in this limit, the thermodynamic potential � is the only
relevant quantity since the free energy F becomes ill-defined.
As shown in �4� the tension field scales formally in the
asymptotic limit as 1 /��. In the numerical treatment this
quantity was set to a bit larger value �ten times at most� than
1/��. We expect a priori typically similar order of magni-
tude for � in order to fulfill in a satisfactory manner local
area incompressibility.

V. GENERALIZATION TO HYDRODYNAMICS

The generalization to hydrodynamics �including flow� is
rather simple. We do not prove the following equations be-
cause this is identical to those known for the Cahn-Hilliard
model �24�:

� · v = 0, �26�

d�

dt
= − 
�̃ , �27�

d�

dt
= 0, �28�

�0
dv
dt

= − �P − � · �� � ��� + � · �d, �29�

where

�̃=̂
dW

d�
− � · � , �30�

� = � � � + �
��

����
, �31�

�d = ������v + ��v�T� . �32�

�d is the viscous stress tensor and ����	0 is the dynamic
viscosity that accounts for a possible viscosity contrast be-
tween the interior and the exterior of the vesicle �26�.

Let us compare this system with that proposed in the
original 3D model �4�. The form �29� of the momentum bal-
ance equation is not appropriate to be compared to that pro-
posed in �4�. An equivalent form is derived in Sec. VI that is
more suitable for comparison with �4�.

The term �����2 in the energy �5� naturally introduces a
surface energy contribution. In the present formulation, this
contribution is present in both Eqs. �27� and �29�, which are
the phase-field and the momentum balance equations,
through the term ��� in the expression for the vector �
�Eq. �31��. In �4� the surface term was not introduced in the
momentum balance �since as stated above, no extra force
from the phase field was intended to be added there�. How-
ever, the phase-field equation in �4� �Eq. �1�� contains a term
like �����2. Since a vesicle has no surface energy, the “ar-
tificial” contribution produced by �����2 has been elimi-
nated in �4� �to leading order� by adding a term like ĉ����,

where ĉ is the curvature of the contour line �=const. How-
ever, no energy has been shown to be associated to the cor-
responding model, since it was not intended in �4� to build a
thermodynamically consistent picture. In a forthcoming
work, we shall include the bending energy and will also
show how the surface energy associated with �����2 can be
subtracted by still keeping the thermodynamic consistency of
the model.

VI. VARIATIONAL FORMULATION

In the following, we prove that the above set of equations
are such that the total energy of the system is a decreasing
function of time.

If one dot-products the momentum balance equation �29�
with the velocity v, one finds the kinetic energy balance
equation:

�0
d�v2/2�

dt
= − � · �v · �PI + � � �� − �d��

+ �� � �� − �d�:�v .

Given the expression �9� for the differential of F, it is easy
to show that

dF

dt
= �̃

d�

dt
+ � · 
�

d�

dt
� − �� � ���:�v .

Adding these two relations and accounting for Eq. �27�,
one finds

d

dt

F + �0

v2

2
� = − 
�̃2 − �d:�v + � · ��

d�

dt
− v · �PI + �

� �� − �d� .

Since the last term of this equation is written in a conserva-
tive form and since the first two terms are always negative, if
one integrates this relation over the entire closed fluid do-
main and accounting for the nonslip condition at the bound-
aries, one finds that the total energy of the system is a de-
creasing function of time.

For other boundary conditions, such as in the presence of
an imposed shear flow, or in a Poiseuille geometry �two par-
ticularly important cases�, the above analysis still holds.
However, as one expects, it is then no longer possible to
identify a Lyapunov functional �a monotonically decreasing
function of time�, as is generic in nonequilibrium situations.

One can also provide a “potential” form for the momen-
tum balance equation �following the denomination intro-
duced in �24��. One only has to use the following relations:

� · �� � ��� = � · � � � + � · ��� ,

�� = � � � + � · ��� + � � � .

The momentum balance equation �29� can thus be written in
the following form:
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�0
dv
dt

= − ��P + �� + �̃ � � + � � � + � · �d, �33�

where it is reminded that

� = −
�

�
+ ���� .

Using Eqs. �30� and �31�, Eq. �33� reads

�0
dv
dt

= − �p + �̃� � � + F� + � · �d, �34�

where p= P+� and

�̃� =
dW

d�
− ��2� , �35�

F� = �����I − n � n� · �� − C� � � −
�

�
� � , �36�

where n=�� / ���� and C=� ·n represent respectively the
unit normal to the interface and its mean curvature.

The momentum balance equation �34� has to be compared
to Eq. �3� in �4�. The pressure and viscous terms are identi-
cal. The main difference comes from the force �̃� that does
not exist in �4�. This is because this force is directly related
to the surface tension force induced by the introduction of a
contribution in ����2 in the energy. Physically, a membrane
does not exhibit any surface tension and this contribution has
therefore not been considered in �4�. However, it turns out
that the mathematical description of the system using the
classical phase-field model exhibits a surface tension force.
For the mathematical model to be coherent with the physical
modeling, the surface tension force must be eliminated; this
issue will be thoroughly analyzed in a forthcoming work.
The force F� �Eq. �36��, must be compared to the force F� in
�4� �Eq. �7��. The expression for these two forces is identical
except that our last term is not present in �4�. This difference
comes from the thermodynamic consistency of the present
model. Indeed, in �4�, the question of a thermodynamic con-
sistency was not a main objective. However, the main inter-
est was in the limit where the relaxation parameter, inter-

preted as � in the present model, tends to infinity. In this
limit, the last term of Eq. �36� vanishes and the two models
coincide. However, the present analysis shows that, in order
that the relaxation equation �28� and the momentum balance
equation �34� are thermodynamically consistent, it is neces-
sary to account for the last term of Eq. �36� in the expression
for the tensionlike force. In this regard, the model proposed
in �4� did not focus on a thermodynamically consistent pic-
ture: the expression �36� reduces to the force F� only in the
limit where �→�. This is to be contrasted with the evolution
equation for the tensionlike force �25� where in �4� one had
to keep � finite albeit very large. The present formulation
treats, so to speak, the two equations at the same level of
description as far as the magnitude of � is concerned.

VII. CONCLUSION

We have provided a thermodynamically consistent model
for vesicles under flow. We have confined ourselves to the
situation of a quasi-incompressible membrane and have then
focused on a phase field model that incorporates the physics
associated to the membrane. We have left open here the fact
that the phase field induces an “artificial” surface tension, as
well as the bending forces. These two issues will be ad-
dressed in future works. Several other issues deserve future
considerations. Of particular importance is the treatment of
possible dissipation due to the sliding of the monolayers
forming the membrane as well as the permeation of the
membrane. Further studies should also deal with the possi-
bility that the membrane, in addition to bending forces, may
possess elastic forces. This is motivated by the fact that real
cells, such as red blood cells, have a cytoskeleton which
exhibits �nonlinear� elastic behaviors �25�.

Finally it is an important task for future investigations to
solve numerically the phase-field equations for vesicles and
possibly compare their efficiency with regard to previous
studies. This issue is currently under investigation.
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